MATH 155 - Chapter 9.7 - Taylor Polynomials and Approximations: Dr. Nakamura

1. Definition: (Taylor Polynomial) The n-th degree Taylor Polynomial of the function f at the point $x=a$ is given by
$P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$
$=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\frac{f^{(4)}(a)}{4!}(x-a)^{4}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}$
2. Definition: (Mclaurin Polynomial) The n-th degree Mclaurin Polynomial of the function f is a Taylor Polynomial when $a=0$, which is given by
$P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}$
$=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x 4+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}$

3. Theorem: Taylor's Theorem (Taylor's Formula with Remainder):

Let f be a function whose $(n+1)$-st derivative $f^{(n+1)}(x)$ exists for each x in an open interval I containing a. Then, for each x in I,

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+R_{n}(x)
$$

ie.
$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)$
where the remainder (or error) $R_{n}(x)$ is given by the formula
$R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$, and c is some point between x and a.
Furthermore,

$$
\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}\right| \leq \frac{|x-a|^{n+1}}{(n+1)!} \max \left|f^{(n+1)}(c)\right|
$$

where c is some point between a and x.

